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Overall Message 2,

e Steady progress and working on problems

 \We have chosen a specific tracker, extinction monitor
scheme, and calorimeter

* Are actively prototyping tracker elements
e Are studying issues from neutrons

e Software/Simulations continue to become more
sophisticated and the Collaboration is becoming more
expert in its use

 \We are moving from “Conceptual Design”, CD-1, cost-range
to “Technical Design”, CD-2, and a baselined cost and
schedule
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Emphasis 4

e This Progress Report will be more ol Cg‘e";cf’:t‘ja' 2
about physics and detector and arXiv:1211.7019
software

L . . U
* Project is extensively reviewed :-MUie
° Only have 35 min Mu2e Conceptual

Design Report

e Will Tell You About Physics Issues

o Will Cover Solenoids/Accelerator in @kiicisy 2%
less detail =@ ™
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Outline

Physics Case and Overview of Experiment

Software/Simulation Status
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Solenoid Status
Accelerator Status

Issues

Summary and Conclusions
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Muon-to-Electron Conversion(, @
muon converts to electron in the field of a nucleus
uw N —e N
I'(u +N(A,Z)—> e +N(A,Z))
I'(u +N(A,Z)— all muon captures)

Rue =
e Charged Lepton Flavor Violation (CLFV)
e manifest Beyond-Standard-Model physics
e SES of 2.3 x 1077, 0.4 evt bkg; 6 x 10-7 at 90% CL
e Standard Model Background of 10->4
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A Single Monoenergetic

Electron

Energy depends on nucleus
If N =Al, Ec = 105. MeV

%
Nucleus coherently recoils s
off outgoing electron:

e two-body process

R. Bernstein

Experimental Signal (3.
uw N —e N
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Contributions to pe Conversion

Supersymmetry Compositeness Leptoquark
Mg =
~ rate~107° A~ 3000 TeV 3000 (A, heg)"? TeV/c?
. . o )
La
d Q e
Heavy Z

Heavy Neutrinos Second Higgs Doublet _
Anomal. Z Coupling

M, = 3000 TeV/c?
w—=@ e W ® e

t t T

|U \Uen|? ~ 8x10713 g(H,) ~ 10*g(H )

q q q q

also see Flavour physics of leptons and dipole moments, arXiv:0801.1826 ;
Marciano, Mori, and Roney, Ann. Rev. Nucl. Sci. 58, doi:10.1146/annurev.nucl.58.110707.171126 ;
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“Model-Independent” Form (&,

K
(14 k&

Lcrrv = (r JAZ /_LL'Y,LbeL(fL_LL’Y,uUL + CZL’YMdL)

“Contact Terms”

Q)

e p
mass scale 4

K
< > K =00
N N N
Supersymmetry and Heavy New Particles at High Mass Scale
Neutrinos

(leptoquarks, heavy Z,...)

Contributes to pL1—ey Does not produce p—ey
(imagine the photon is real)
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ue Conversion and p—ey (3

A (TeV): | Andre deGouvea N>< |
1) Mass Reach to
"“104 TeV B( p— e conv in Z7Al)=10""
2) roughly equal %
to MEG upgrade S
(6e-14) in loop- %
dominated — ©
physics -
B(pn— ey)=10"" Q
L
3) MuZe is a S MEG 2011 N g
discovery \ W e %
experiment
loop- dommated K contact- domlnated
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Summary of Physics Case({ 3,

e Discovery and Discrimination:
* MuZ2e can discover a wide range of physics
e SUSY, heavy neutrinos, leptoquarks, extended Higgs sectors,...
* MuZ2e can discriminate among models
* Crudely, the Lagrangian has a numerator (coupling) and

denominator (mass scale). A single measurement gets the
ratio; using measurements in different CLFV processes and/or

varying Z determines both

see talks at 1st Int Conf on CLFV: http://clfv2013.le.infn.it
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MuZ2e And

the LHC

Muz\/

1) arXiv |mplodes
2) models have to
explain the signal
3) Project X

R. Bernstein

u MU2
e

New P@

LHC’7

no

\ MuZ2e

could see a
signal from physics
up to 10* TeV

yes

) Null Result has enormous
dlscrlmmatlng power for models
explaining LHC result
2) Project X
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Evolution of Program

e Exploration With Z is vital; Mu2e upgrades and
higher Z under study

V. Cirigliano, R. Kitano, Y. Okada, P_Tuzon., arXiv:0904.0957 [hep-ph];
Phys.Rev. D80 (2009) 013002

013: G. Fogli et al., arXiv:1205.5254
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Figure 3: Target dependence of the 4 — e conversion rate in different single-operator A . . . . .
dominance models. We plot the conversion rates normalized to the rate in Aluminum V. Cll’lg|lan0, B. Grinstein, G. Isidori, M. Wise
(Z = 13) versus the atomic number Z for the four theoretical models described in the Nucl.Phys.B728:121-134,2005

text: D (blue), S (red), V) (magenta), V(%) (green). The vertical lines correspond to
Z —13(Al), Z = 22 (Ti), and Z — 83 (Pb).
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Unsolicited Testimonial (3.

e From Sheldon Glashow, 5/23/2013: (italics mine)

Particle Physics in The United States

A Personal View

. . i Sheldon Lee Glashow
Testing Flavor Symmetries with Muons: Boston University

| focus on these three changing muon decay modes: radiative decay
( u— e +y ), 3-e decay, (u—e + e + e) and orbital conversion (z+ N — e + N)

... Because their standard-model branching ratios are far too tiny for
possible detection, observation of any mode would be certain evidence of new
physics. That's what makes such sensitive searches potentially transformative.

http://arxiv.org/abs/arXiv:1305.5482
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Mu2e Muon Beam:

Three Solenoids and Gradient
4.6T >B-field gradient > 1T

Detector
Production 2.5T

-
-
-
-

B,=406T = Muon Momentum
~ 50 MeV/c:
2T muons range out in

e Target protons at 8 GeV inside superconducting solenoid stopping foils

e Capture muons and guide through S-shaped region to Al stopping

target %

U, e
e Gradient fields used to collect and transport muons
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l'LMU

Reminder of Detector L %

x Proton Absorber 1_|_ Muon Absorber

i ’. B — ﬁ_______; [
- ma H-_ﬁl I’ -—l

-n'b-r—umv—v‘s—wM\o—e-Mmm,m—mm ¥ pomcmr—y W—ﬂ

muon stopping target

Tracker EM Calorimeter

e Tracker technology downselect: were
considering a drift chamber but decided to stay
with straws; drift chamber will be used for MEG

upgrade

e Big change in calorimeter: went from four
vanes oriented along beamline to two disks.
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Reminder of Detector (3.

muons

Proton Absorber Muon Absorber
2T 1T

muon stopping target

Tracker EM Calorimeter

e First real, careful design of beam stop by NIU and
FNAL. Must minimize albedo back into detector

e | will skip this today for lack of time
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Underway e

x Proton Absorber Muon Absorber

AVIIIII’II‘

o=

EM Calorimeter

L’IIIIIIII

muon stopping Tar'geT

Tracker
e Muon capture process ejects protons, neutrons and photons

e protons have large dE/dx and can deaden detector

e Both the stopping target and absorber are sources of energy loss and
scattering that degrade the resolution — these two completely dominate the
width of the signal peak, and contribute about equally.

e Optimization, measurements underway: AlCap at PSI
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Beam Time Structure (@

0.08 F—
— [ ] POT pulse
0.07 £ proton pulse o arrivl;I/decay time (x 1M)
0.06 E— w arrival time ( x 400)
0'05 g -— ===-- w decay/capture time ( x 400 ) >
0.04F no beam between pulses: extinction
0.03E |
0.02FE measurement period
" ¥k o——-]-muons at stopping farget
O =0 200 400 600 800 1000 1200 1400 1600 1800
Time (ns)

® Muons reach the stopping target in ~250 ns

e Stopped muon lifetime on Al ~800 nsec

e Measurement Period after beam flash, prompt bkgs (7)
decay

e ~1 usec window, ~50% acceptance
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Prompt Backgrounds

energy spectrum of y measured on Mg
J.A. Bistirlich, K.M. Crowe et al., Phys Rev
C5, 1867 (1972)

L Radiative pion Ca ptu re, T - A(N, Z) —)y —|—X. ((abs([21%))*[0])"exp(-(abs([2I-51X)V1])* (B1+4T%)
Fit
G
® 'y up to mj[, peak at 110 Mev; y_) e+e— ; if one : RMS 12.27

electron ~ 100 MeV in the target, looks like ™9 o rameoom
signal: limitation in best existing [B o
experiment, SINDRUM II? 1 P

e data of good quality and can estimate errors
e this is why we wait for measurementm;\‘
about 10" suppression of RPC

200

40 60 80 100 120 140

also included internal Energy (MeV)

conversion, T N - e'e X
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Antiproton-Induced RPC (V&7

e antiprotons produce RPC background

e produced in the production target and have
low KE, therefore propagate slowly to the
stopping target

e since they are slow, they evade the
extinction requirement and the measurement
period selection

e annihilation of antiprotons makes pions

0.08- —lar slow antiprotons

0.07 = ——— v arrival/decay time (x 1M) . .

005 - T eyt i 400 A s

g:g% measurement

0.032 periOd and

s L r P instantly produce
T TR R T ‘2?(;&"_;;156_""1600'_' 1800 RPCs

Time (ns)
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What Do We Need to Know (32
AbOUt PbarS? w:‘rom S. Striganov, FNAL

o Differential Cross-Section

e Pions (and other particles) produced in
annihilation

e We get these from MARS group and are
checking against primary data and G4 " "~

ntiproton production in proton tantalum interaction near 10 GeV/c.

system to reduce antiprotons to an acceptable
level; annihilate far from stopping target

e Design for < 0.02 bkg events, hence large
safety margin relative to total 0.4 event bkg
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Instrinsic: Decay-In-Orbit @
Background

Electron can recoil off
nucleus after normal muon
decay

Imagine jumping to the
neutrino zero-momentum
frame: looks like an electron
recoiling against a nucleus,
same as signal

The DIO electron can be
exactly at conversion energy
(up to neutrino mass)
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Decay-in-Orbit Spectrum

free muon decay

(Arbitrary Units)

signal

ound muon decay

L TR R R N SR A T R TR IR T T SR N
0 20 40 60 80 100
Electron Energy (MeV)
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Spectrum Near Endpoint (,

Czarnecki, Tormo, Marciano: arXiv:1106.4756

pure theory: (Econv - E)°

=

. N Eyents/Q.03 MegV/c
A Q

-
(=}

10°

10¢

-3 LiLrl 1 1 1 1 1 1 1 1 1 1 1 1 1 Ll Ll
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9

R.

<

Czarnecki etal
_____ Conversion, R M=10"6

Illl l (| l lll | l 11 lll l Ill

e (MeVic)

(=2

2

10

10

Q,

N Eyents/Q.03 MegV/c
Q

Phys.Rev. D84 (2011) 013006

spectra on log scales

w

<

3

96

—— (Czarnecki etal
— Conversion, R M=10'16

99 100 101 102 103 104 105 106
ceco (MeV/c)

97 98

authors are adding radiative corrections to spectrum

Bernstein
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Cosmic Ray Background (87

from MuZ2e full

e Muons pass through simulation
stopping target and | drne =
knock out electron
indistinguishable
from signal

e Would be 1/day
without CRV

e [ssue with CRV’s is
neutron flux: more
later

R. Bernstein 26 MuZ2e FNAL PAC 7 June 2013




Outline

 Physics Case and Overview of Experiment

o Software/Simulation Status

 Experiment Design Updates

e Solenoid Status
e Accelerator Status

e |ssues

e Summary and Conclusions

R. Bernstein
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Software/Simulation 3.

e MuZ2e has an active core of physicists working on the full
(Offline = art/C++/G4) suite, together with input from
G4Beamline and MARS

e use full power of Offline as default:

e can follow particle history, write out all information,can
overlay accidental activity, feeds directly into full
reconstruction, plays well on grid

e model is to do some designs, where easier, in MARS or
G4BI and then move to Offline for official results

e or use MARS where MARS is best and then combine
with Offline
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People Using Full Simulation

Institution Last Name First Name Position Role User/Developer
BU Barnes Emma Post-Doc Beamline & Backgrounds |U
BU Logashenko Vanya Senior Beamline & Backgrounds | UD
Caltech Echenard Bertrand Post-Doc Calorimeter uD
Fermilab Gaponenko Andrei Wilson Fellow Background Coordinator | UD
Fermilab Bernstein Robert Co-Spokesperson Beamline& Backgrounds | UD
Fermilab Knoepfel Kyle Post-Doc Beamline & Backgrounds | UD
Fermilab Kutschke Rob Senior Head of Software uD
Fermilab Murat Pavel Senior Reconstruction u
Fermilab Rusu Vadim Senior Detector uD
INFN Lecce Tassielli Gianfranco Post-Doc Reconstruction uD
INFN Lecce Ignagtov Fedor Senior Reconstruction u
INFN Lecce Onorato Giovanni Senior Backgrounds ubD
INFN Pisa Pezzullo Gianni PhD Student Calorimeter u
Irvine You Zhengyun Post-Doc Extinction ubD
NIU Hodges Zachary Student Stopping Target

NIU Yurkewicz Adam Post-Doc Stopping Target

Rice Chandra Avdhesh Post-Doc Stopping Target

UC Berkeley Brown David Senior Reconstruction ub
UC Berkeley Lee Myeongjae Post-Doc Reconstruction ubD
UVA Ehrlich Ralf Post-Doc CRV and Event Display ub
York Lynch Kevin Senior GEANT Physics Lists ub

R. Bernstein

=21/ 137 collaborators
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G4Beamline/MARS (30

e Primarily for neutron modeling, Cosmic Ray Veto,
and Beam Dump

Institution Last Name First Name Position Role
. Beamline &

BU Miller James Co-Spokesperson o

BU Barnes Emma Post-Doc Bzl &
Backgrounds

Fermilab Coleman Rick Senior Neutron Modeling

Fermilab Khalatian Vladimir Student Bzl &
Backgrounds

NIU Hedin David Senior Muon Beam Dump

UVA Okuzian Yuri Post-Doc CRV

UVA Frank Martin Post-Doc CRV

take-away: > 28 collaborators actively working on simulations
at all levels, most of whom are using FNAL's art package
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Outline

 Physics Case and Overview of Experiment

o Software/Simulation Status

e Experiment Design Updates

e Solenoid Status
e Accelerator Status

e |ssues

e Summary and Conclusions

R. Bernstein
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Major Downselects (/3.

e Extinction Monitoring
* Tracker

e Calorimeter
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Extinction Scheme 4

 Need 10-19 in-pulse/out-of-pulse protons, and
be able to measure in ~ 1 hr

e Direct beam counting not technically feasible
and had potentially large systematics

e Dual Telescope:
e one before extinction dipole: 10-4-°)
e one looking at primary target: 10-10

e Will also have “diagnostic dump” upstream of
solenoids: can establish 10-1° before data
taking and can identify and correct problems
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Extinction Telescope @

e Si Pixel Telescope (getting help from Purdue
with pixel expertise)

e Augmenting with calorimetric PID (Rice)
solenoid

Target

(too small to see)

Proton |

eam R .
absorber collimators

prototype test

< 20 m > Fall 2013

Monitor
(too small to see)

Filter magnet
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Tracker

e 18 stations of straw chambers

e 12 panels of parallel double-layer straws

e 21 600 straws

e 5 mm diameter, 15 um mylar walls

e <50 psec At resolution N
R. Bernstein 35 Mu2e FNAL PAC 7 June 2013




Prototyping Tracker (/3.

Sixteen Straws here,“panel” test in fall

@ | eak rate
-0.22§6x +20.011

* 15 micron straws in Jysasiasss: i
: VI =T 5x +19. ‘ S| + 700 gm
vacuum is not trivial Y =-0.2595x + 19.933

[ Y ? “; 15§S|+0
y=-0.1356x + 15.308 | P o em

D 1
Q.
 \We are studying sag,
creep, leak :
Da
* Pressure drop = 0.244 psi/ day (cyi_,s ~20psi (no env. corr.)
) < * Leak rate = 0.00847 mBar/Bar/min
Ieak rate 2 Ccm’ * Previous test @ 15 psi + 0 gm weight ~0.00813/mBar/Bar/min
req uire < 7 cCm « 2 weeks under 20 psi + 700gm and no problem

Chiho Wang & Seog Oh

do straws leak?
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Prototyping Tracker

: ' ime™ @
Fractional Tension change vs tim z

Exp Fit (cO*e<!"t+0)

(o] 1 05 ~od ] 2
2 w2 Tndf 300am| 2348717 || x27ndf 500 am| 4558718
5 A CECT) N A T ) B 3
P 0 06519+ 001119 || 0 0.6633 + 0.006791
e p 8.75e-05 + 626105 || c1 0.0001968 + 3.8e-05
— c2 0+ 0 c2 0+ 0
. 0.9 22 Tndf 200 am|_ 1817718 |[ x¥/ndf 800 am| 1252718
Do straws creep, i.e Rt
y 1.G. 0 0.656+0.0086 || 0 0.6785 + 0.005813
0.9 cl 0.0001922 + 4.793e-05 || 1 0.0003044 + 3.182
Q2 0: 0 || e 0: 0

lose tension?

e Creep measured,
good for = 7 years

lIIIllIII|lllllll|l|llIlIIIIllIIlll

0 50 100 150 200 250 300 350
. (corrected for temperature & humidity variation) ~ 9s
[28/ Chiho Wang, Seog Oh

3/2

14

tension over 325 days:
relaxes to constant
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Pattern Recognition (3.

this is what a helical conversion
track looks like in a toy MC:
circle in end-view, sine-wave

from side

$4% .38 8

AAAAAAAAAAAAA

e |earned from Simulations We Need More Information

R. Bernstein
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Back to Simulations
e Single Proton Pulse: hits in 500-1695 sec window,

this in simulation

137 é
2 A
| Nj 3 —
\ { e —
o A
f f
| |
‘l | / ||'
] ] ¥
[ : J o

J

vy
.’ll 17
Lok 3

el |

2

e want better, get position along straw: 3rd coordinate by
time-division
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Resolution(cm)

3rd Coordinate Readout (37

Use Time Division

MEASURED resolutions used in simulations

B e (6keV x-ray)
+ B “sr (B 0.546MeV, 2.28MeV)
3.5 ] —
= * * * |
sl . ~3cm ; N
= ¢ $ i
¢ bt
L 1 | I 1 L L I L 1 | I 1 L 1 l L 1 1 I L 1 1 I 1
0 20 40 60 80 100 120

Position along the straw(cm)
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Tracker Momentum Scale(C 3.,

e Suppose we’'re setting a limit, so no signal

e a scale shift then moves DIO into or out of signal
window

Reconstructed e Momentum

Signal Window

o

—h

»
|

o

—

N
|

N E\gnts/0.0Z MeV/c
o
I

©
—
|

TTE A T T T T IT T T
i
— =

0.08 F100 keV = +0.11/ — 0.07 events

0.06

—
LI

0.04

—+
e,

0.02

+
. .
o
+
R mmmmmmmmaaa

+
1Tt
1 - '.+———H—c-_+__+

0 ' ' -
1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1
103 103.2 1034 103.6 103.8 104 104.2 1044 104.6 104.8 105
p (MeV/c)

|||||||||||||||||
-+
—
—+
—+
J— = e e mmmEmEEEE e e m - ———-
=
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Momentum Scale Determinination@

e Precision Surveys e Fit DIO spectrum

_ e Spectrum from theory
e X-ray tracker wire

positions e Resolution from cosmic e
o e Toy MC study: 15 KeV/c
* 50 ym precision statistical resolution possible
® Map B'fleld (2 GaUSS DIO Fit Shift | o 12637231
goal) b o=t5 KeVio| | m
 Calibrate using n*—e*v "F
* Requires special detector
and beam configuration
P Under Study -8.1_5“'-0.1'”-10.05 'lo'”(').os“;o;(lm;;lgls
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Measure Resolution

Don’t have two-body decays and a mass peak

Cosmic rays hitting the calorimeter can produce e- that reflect in the upstream gradient field

e Allows 2 independent measurements of the same particle

The momentum difference gives the resolution function

e Also measures the energy loss in passive material

R. Bernstein
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10?

10

Reco Downstream - Upstream momentum, d0 cut

_ dmomdiff
F Entries 3948
: Mean -0.285
B RMS 09677
= Underflow 0
E Overflow 0
i P indt 1231110
B Prob 0.1871
— Norm 42044114
C %0 0.0327+ 0.0057
B sgma 015284 0.0047
B n 262+ 0.15
alpha 0.7532+ 00331
tailfrac ~ 0.02797 + 0.00500
tailambda  0.1659:+ 0.0111
L ‘ L L u." - ‘ —— | Ll l | —— | 1 |
-10 -8 -6 -4 2 0 2 4

MeV
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Current Algorithm

l’ll\/\u
7 e

e Full Simulation, Accidental Activity, measured
resolutions for 3rd coordinate

e Acceptance 10.8%:

e time window ~50%, reconstructible tracks ~ 40%

R. Bernstein

Reconstructed e Momentum

ot
—y
D

o
-
N

©

N Events/0.02 MeV/c
o

o
-y

f_ 7.56 x 10" stopped 1 Signal Window

— R, =1.00 x10™ :<

:— J Conversion =5.06 +0.03 +

g 1N

- I DIO = 0.20 = 0.01 M' * NM H

3 f RPC+AP+Cosmic = 0.18 H| M i

— { i “

- " it P

ul s L

- %ﬂw ! i v

. bt MM&M ﬁl* B

— fy it it P b

WMMM#**WWM%W B E MJ N

C 1 1 1 | 1 1 1 1 | 1 1 1 1 I 1 1 1 1 I 1 1 1 1 1 1 1 1
100 101 102 103 104 105

44 Mu2e

already 25%
better than CDR
and additional
optimizations
underway
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Background Sensitivity (¢35

-~ CE, R=10"®
— DIO X10

Tk

i_

event yields

2

1

IIII|IIII|IIII|IIII|IIII|IIII|IIII

llllllllllllllllllllllllllllllllllllllllllllllll
-% 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Baékground rate relative to Mu2e nominal (=1)

 Momentum resolution unchanged, efficiency
reduced by 5% (relative) with 4X nominal

background
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Calorimeter s 2
* Timing
e E/p
e Position
e And Particle ID: reject 105 MeV/c muons

e we're finding (thanks to ability to MC far
more with grid technology) very rare
backgrounds that calorimeter can reject

e RPC Background Measurements

* New physics measurement
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l’lN\U
e

New Calorimeter Configuration

n
* OlId Configuration Four Vanes :
born in a
* not charge symmetric muon :}adout
capture side

* but neutrons from muon capture in the stopping target
mostly hit front edge; electrons enter on large rectangle

 \We want charge symmetry

e Helps perform unique physics measurement of y N—e*N

* the key prompt bkg, RPC, charge-symmetric: as many e* as e

e can look in the momentum signal box at e™ and since checking
opposite charge, experiment is still “blind”
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New Configuration (3.

readout

/ side

Two discs are separated by ~1/2 “wavelength”

If conversion electron passes
through first hole, it can hit
second disk

5x5 LYSO array to be tested at Mainz this fall;
Caltech & Frascati are calorimeter team
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Will this Work? 4

e (Calorimeter now face-on to all particles produced from
neutrons, photons, etc from muons captured in
stopping target

e Using full simulation:

disk 1 disk 1
600_E

400

200

-200F

-400f

-wo'F '
L L l L L l ' '

800 400

lll L lllll llllllllllllll
-600 -400 -200 O 200 400 600
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Yes 2

Resolution - Crystal Ball fits
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TSu Cryostat

e Production Solenoid (PS)

e Transport Solenoid (TSu,TSd)
* Detector Solenoid (DS)

* Cryogenic Distribution

DS Cryostat
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Solenoid Prototypes (/.

e Ordered:
e 0.5 km cable for Production and Detector Solenoids
e 4 km for Transport Solenoid

e The vendor has made 80 km of TS strand that meets
or surpasses all our specifications.

e They are now making a cable out of that strand (need
< 60 for 4 km above, so have spare strand)

 \We have received and are testing the first batch of PS
strand. DS strand will arrive in next couple months.
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expect test

late summer/

early fall
2013

Indirect Cooling at Fermilab Wis Adapt coil/ modify test cryostat
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TS Prototype 4

 Module Prototype:

e fabrication, splices, cooling, training Ee et
and stabllity, axial forces, magnetic = |
measurement

e FNAL-INFN collaboration planned &
e FNAL: cable and supporting shell, tests

e INFN: colil fabrication and integration in
iIndustry

e Get cable in fall, start winding!
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Beam Modeling

e “|ate” Protons have a higher
probability of producing
pions that get into
measurement period and
produce RPC background

Protons outside around
+ 120 nsec ~ 3e-5,
extinction dipole ~ 10 :
< 3e-11 overall

Need 10-10 (can adjust

timing of extinction dipole to [

fine-tune)

R. Bernstein
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One trace eac h 1000 turns = 1.695 ms

— L

~44ms
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time dependence of spilll
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e Measure extinction before data-taking: check and
diagnose here during data-taking if needed

e Can directly measure entire beam

e which is destructive but fast
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Issues 4

e Heat and Radiation Shield

e Still checking and tuning the . X27_.. W
beam targeted inside a superconducting solenoid

e long term issues far beyond MuZ2e (upgrades,
neutrino factories, muon colliders...)

e Neutrons

e our primary production target — 8 GeV collisions—
and our muon beam denominator, all muon
captures, make neutrons
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Thermal and Quench
Analyses

eeeeeeeeeeeeeeeeeee (Ires/1)

Multiple quench locations due to
quench-back from the structure

1
!09

" Production

Solenoid
z‘jﬂ location I :1
Jransport

Solenoid
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Neutron Activity

Neutrons are produced by several sources in Mu2e
Ba Concrete Blocks

* Primary target, collimators, p stopping target,
beamstop, ...

* and make many photons

Neutrons affect the detectors

* Radiation damage to SIPMs (esp. CRV)

* Fake hits in the tracker and calorimeter

Fake coincidences in CRV

* Reduces conversion efficiency

Neutron mitigation:

e Shield CRV with concrete and steel

* Use fiber readout to move SIPMs out of high-
flux regions

Optimization still in progress
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Backgrounds > 2

Source Events Comment

Anti-proton capture 0.1+£0.06

Radiative n capture 0.04 £ 0.02 Assumes 10-19 extinction

Beam electrons 0.001 £ 0.001

Decay in Orbit 0.2+£0.06

Cosmic ray induced 0.025 + 0.025 Assumes 10+ inefficiency
u decay in flight 0.01 £0.005  With e scatter in target
Total 0.4 +£0.1

R (SES) =2 x 107 R,(90% CL) =6 x 1017
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MuZe Schedule o 2
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Conclusions

u MU2
< .e

e MuZ2e is still important; if anything, more so than

when proposed

e Simulations and Experiment Design have
significantly advanced over the last six months

e alot | didn't have time to show is underway

e Active Prototyping Program

e Afew issues, but no show-stoppers.

e |Lab is putting resources into the problems

e Will Be Moving from Design to Construction over

next year
R. Bernstein 65 Mu2e
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R. Bernstein

Backups
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» Optimizing field design to reduce potential

backgrounds

eintroduced small gradient to eliminate trapping ; j\

N\
e Preliminary Conductor placement tolerance study - | \ o \Q

completed

eStray field analysis in progress

R. Bernstein
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Tracker ASIC

65nm process

Oscillator-ring dual 16-bit
TDC

10 (12) bit ADC

4-channel prototype

HIPPO ADC performance TDC Resolution
L o X o® 2 / ndf 3.78e+04 /7
£ F Constant 9.71e+05 = 8.70e+02
0001 Mean -3.792 + 0.001
L Sigma 0.6419 + 0.0003
Q 800|—
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Track Finding and Fitting @

Remove hitS from IOW' Hit Time, All Hits, event 14 Hit Time, Selected Hits, event 14
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Reconstruction Efficiency ¢35,

ceaccepance  11% Total Acceptance

3 gokaS ~ .4 time window ~ .5
é 06 :—
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Test Facility Upgrades @

e New Facility for large, indirectly cooled
solenoids (MICE and MuZ2e)

e And improvements for higher current in MuZ2e

e Will Test Toshiba Coil and TS prototype

Support Rod (1 of 4)
(to coil mounting brackets)

Helium Cooling
Supply Pipe

LTS SC LEADS
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e Splice tests will be performed in
Magnet Test Facility

e Integrate with Test Winding Coil:
welded joints, remove Al for Cu-Cu
joint to connect to power leads

® Investigate radiOlogiCal teChnique TeV HTS leads in MTF test area
(learn from CERN)

splice sample with AL cladding chemically etched away
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With g-2

e ;. =\ Temporary
¥ Sheldhg .

shielding in tunnels still being
worked out
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Accelerator-| 4

e Heat and Radiation Shield (HRS to protect
superconducting coils) Design solution is near:
brass plus water.

* Production target design: Radiation-cooled vs
water-cooled:

 Rad-cooled easier to support and to service
with remote handling, but higher vacuum
required (10 torr vs 10" torr)

e |f 10 torr not achieved, a rad-cooled
tungsten target may erode from interaction
with H20. Possible solution: iridium-coated
tungsten. Tests underway at RAL
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Accelerator-I| 4

e Other systems progressing well (much off-
project or g-2)

e Design work on the extraction septum, RF
knockout kicker, spill monitor, and magnet
systems is on track. Work on resonant
extraction beam transport and loss models is
very advanced

e Mu2e Beamline: Optics design for 80% of line
Is complete, sufficient to fix the position of the
proton target

R. Bernstein 75 Mu2e FNAL PAC 7 June 2013




AlCap Measurement (3.

e Mu2e/COMET Collaboration
e U. Wash, BU, Houston, Lecce, PNNL, ANL

e Muons captured in stopping target produce n,p, y

e fluxes not well known

e Use stopped muon beam to measure fluxes for
Al, Si, Ti

e Low Energy negative muon beam at PSI

e one month scheduled in Dec 2013, possibly
more in Spring 2014
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Review Schedule

Received CD1 June 2012
Receive CD3a December-January 2014

e authorizes purchase of long lead time item:
superconductor for solenoids

Currently preparing for coincident CD2/CD3 review spring-
summer 2014

CD2: Cost, schedule, scope, baseline, TDR
CDa3: Final or near-final design
e Receive CD2/CD3 Late FY 2014

Break ground on building Oct 2014

l’ll\/\u
S
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